Optimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid $\ell_1-\ell_0$ layer decomposition domain

dc.contributor.authorDas, Manisha
dc.contributor.authorGupta, Deep
dc.contributor.authorRadeva, Petia
dc.contributor.authorBakde, Ashwini M.
dc.date.accessioned2023-01-26T09:51:49Z
dc.date.available2023-07-31T05:10:26Z
dc.date.issued2021-07
dc.date.updated2023-01-26T09:51:49Z
dc.description.abstractMedical image fusion plays an important role in the clinical diagnosis of several critical neurological diseases by merging complementary information available in multimodal images. In this paper, a novel CT-MR neurological image fusion framework is proposed using an optimized biologically inspired feedforward neural model in twoscale hybrid $\ell_1-\ell_0$ decomposition domain using gray wolf optimization to preserve the structural as well as texture information present in source CT and MR images. Initially, the source images are subjected to two-scale $\ell_1-\ell_0$ decomposition with optimized parameters, giving a scale-1 detail layer, a scale-2 detail layer and a scale2 base layer. Two detail layers at scale-1 and 2 are fused using an optimized biologically inspired neural model and weighted average scheme based on local energy and modified spatial frequency to maximize the preservation of edges and local textures, respectively, while the scale-2 base layer gets fused using choose max rule to preserve the background information. To optimize the hyper-parameters of hybrid $\ell_1-\ell_0$ decomposition and biologically inspired neural model, a fitness function is evaluated based on spatial frequency and edge index of the resultant fused image obtained by adding all the fused components. The fusion performance is analyzed by conducting extensive experiments on different CT-MR neurological images. Experimental results indicate that the proposed method provides better-fused images and outperforms the other state-of-the-art fusion methods in both visual and quantitative assessments.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec722517
dc.identifier.issn1746-8094
dc.identifier.urihttps://hdl.handle.net/2445/192635
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.bspc.2021.102535
dc.relation.ispartofBiomedical Signal Processing And Control, 2021, vol. 68
dc.relation.urihttps://doi.org/10.1016/j.bspc.2021.102535
dc.rightscc-by-nc-nd (c) Elsevier Ltd, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationDiagnòstic per la imatge
dc.subject.classificationManifestacions neurològiques de les malalties
dc.subject.classificationImatges mèdiques
dc.subject.otherDiagnostic imaging
dc.subject.otherNeurologic manifestations of general diseases
dc.subject.otherImaging systems in medicine
dc.titleOptimized CT-MR neurological image fusion framework using biologically inspired spiking neural model in hybrid $\ell_1-\ell_0$ layer decomposition domain
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
722517.pdf
Mida:
7.97 MB
Format:
Adobe Portable Document Format