Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Meritxell Vila Miñana, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/203675

Estimating the dimensionality of complex networks using persistent homology

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] In this work, a new interdisciplinary approach is presented to study the dimensionality of complex networks using techniques from topological data analysis (TDA) through a filtration of graphs by vertex degrees. For each of two real-world complex networks, 30 surrogate graphs were generated in each dimension from 1 to 10, and several TDA descriptors of graphs were compared with the corresponding values for the real networks in order to estimate their latent dimension. Total persistence, Wasserstein distance and scale-space kernel dissimilarity, among other descriptors, yielded consistent outcomes. The results of this study suggest that TDA is sensible to the latent dimension of complex networks, and provide conclusions consistent with those obtained in previous studies.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2023, Director: Carles Casacuberta

Citació

Citació

VILA MIÑANA, Meritxell. Estimating the dimensionality of complex networks using persistent homology. [consulta: 27 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/203675]

Exportar metadades

JSON - METS

Compartir registre