Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by, (c) González et al., 2008
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/7321

Probe-specific mixed-model approach to detect copy number differences using multiplex ligation-dependent probe amplification (MLPA)

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Background: MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample. Results: Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace. Conclusion: Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed.

Citació

Citació

GONZÁLEZ, Juan r., CARRASCO JORDAN, Josep lluís, ARMENGOL, Lluís, VILLATORO, Sergi, JOVER ARMENGOL, Lluís de, YASUI, Yutaka, ESTIVILL, Xavier. Probe-specific mixed-model approach to detect copy number differences using multiplex ligation-dependent probe amplification (MLPA). _BMC Bioinformatics_. 2008. Vol. 9, núm. 261. [consulta: 20 de gener de 2026]. ISSN: 1471-2105. [Disponible a: https://hdl.handle.net/2445/7321]

Exportar metadades

JSON - METS

Compartir registre