Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Mujal Torreblanca, Pere et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195455

Supervised learning of few dirty bosons with variable particle number

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We investigate the supervised machine learning of few interacting bosons in optical speckle disorder via artificial neural networks. The learning curve shows an approximately universal power-law scaling for different particle numbers and for different interaction strengths. We introduce a network architecture that can be trained and tested on heterogeneous datasets including different particle numbers. This network provides accurate predictions for all system sizes included in the training set and, by design, is suitable to attempt extrapolations to (computationally challenging) larger sizes. Notably, a novel transfer-learning strategy is implemented, whereby the learning of the larger systems is substantially accelerated and made consistently accurate by including in the training set many small-size instances.

Citació

Citació

MUJAL TORREBLANCA, Pere, MARTÍNEZ MIGUEL, Alex, POLLS MARTÍ, Artur, JULIÁ-DÍAZ, Bruno, PILATI, Sebastiano. Supervised learning of few dirty bosons with variable particle number. _SciPost Physics_. 2021. Vol. 10, núm. 3, pàgs. 73-89. [consulta: 21 de gener de 2026]. ISSN: 2542-4653. [Disponible a: https://hdl.handle.net/2445/195455]

Exportar metadades

JSON - METS

Compartir registre