Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/195455
Supervised learning of few dirty bosons with variable particle number
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We investigate the supervised machine learning of few interacting bosons in optical speckle disorder via artificial neural networks. The learning curve shows an approximately universal power-law scaling for different particle numbers and for different interaction strengths. We introduce a network architecture that can be trained and tested on heterogeneous datasets including different particle numbers. This network provides accurate predictions for all system sizes included in the training set and, by design, is suitable to attempt extrapolations to (computationally challenging) larger sizes. Notably, a novel transfer-learning strategy is implemented, whereby the learning of the larger systems is substantially accelerated and made consistently accurate by including in the training set many small-size instances.
Matèries
Matèries (anglès)
Citació
Citació
MUJAL TORREBLANCA, Pere, MARTÍNEZ MIGUEL, Alex, POLLS MARTÍ, Artur, JULIÁ-DÍAZ, Bruno, PILATI, Sebastiano. Supervised learning of few dirty bosons with variable particle number. _SciPost Physics_. 2021. Vol. 10, núm. 3, pàgs. 73-89. [consulta: 21 de gener de 2026]. ISSN: 2542-4653. [Disponible a: https://hdl.handle.net/2445/195455]