Supervised learning of few dirty bosons with variable particle number

dc.contributor.authorMujal Torreblanca, Pere
dc.contributor.authorMartínez Miguel, Alex
dc.contributor.authorPolls Martí, Artur
dc.contributor.authorJuliá-Díaz, Bruno
dc.contributor.authorPilati, Sebastiano
dc.date.accessioned2023-03-17T15:52:01Z
dc.date.available2023-03-17T15:52:01Z
dc.date.issued2021-03-24
dc.date.updated2023-03-17T15:52:01Z
dc.description.abstractWe investigate the supervised machine learning of few interacting bosons in optical speckle disorder via artificial neural networks. The learning curve shows an approximately universal power-law scaling for different particle numbers and for different interaction strengths. We introduce a network architecture that can be trained and tested on heterogeneous datasets including different particle numbers. This network provides accurate predictions for all system sizes included in the training set and, by design, is suitable to attempt extrapolations to (computationally challenging) larger sizes. Notably, a novel transfer-learning strategy is implemented, whereby the learning of the larger systems is substantially accelerated and made consistently accurate by including in the training set many small-size instances.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec711452
dc.identifier.issn2542-4653
dc.identifier.urihttps://hdl.handle.net/2445/195455
dc.language.isoeng
dc.publisherSciPost Foundation
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.21468/SciPostPhys.10.3.073
dc.relation.ispartofSciPost Physics, 2021, vol. 10, num. 3, p. 73-89
dc.relation.urihttps://doi.org/10.21468/SciPostPhys.10.3.073
dc.rightscc-by (c) Mujal Torreblanca, Pere et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationBosons
dc.subject.classificationFísica de partícules
dc.subject.classificationTeoria quàntica
dc.subject.otherBosons
dc.subject.otherParticle physics
dc.subject.otherQuantum theory
dc.titleSupervised learning of few dirty bosons with variable particle number
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
711452.pdf
Mida:
912.14 KB
Format:
Adobe Portable Document Format