Hypertetrahedral arrangements

dc.contributor.authorColarte Gómez, Liena
dc.contributor.authorCosta Farràs, Laura
dc.contributor.authorMarchesi, Simone
dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)
dc.contributor.authorSalat Moltó, Martí
dc.date.accessioned2023-03-08T07:08:51Z
dc.date.available2023-03-08T07:08:51Z
dc.date.issued2021-12-19
dc.date.updated2023-03-08T07:08:52Z
dc.description.abstractIn this paper, we introduce the notion of a complete hypertetrahedral arrangement $\mathcal{A}$ in $\mathbb{P}^n$. We address two basic problems. First, we describe the local freeness of $\mathcal{A}$ in terms of smaller complete hypertetrahedral arrangements and graph theory properties, specializing the Mustață-Schenck criterion. As an application, we obtain that general complete hypertetrahedral arrangements are not locally free. In the second part of this paper, we bound the initial degree of the first syzygy module of the Jacobian ideal of $\mathcal{A}$.
dc.format.extent25 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec717456
dc.identifier.issn0025-5874
dc.identifier.urihttps://hdl.handle.net/2445/194820
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s00209-021-02911-7
dc.relation.ispartofMathematische Zeitschrift, 2021, vol. 301, p. 515-539
dc.relation.urihttps://doi.org/10.1007/s00209-021-02911-7
dc.rightscc by (c) Liena Colarte-Gómez et al., 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGeometria algebraica
dc.subject.classificationAnells commutatius
dc.subject.classificationHomologia
dc.subject.otherAlgebraic geometry
dc.subject.otherCommutative rings
dc.subject.otherHomology
dc.titleHypertetrahedral arrangements
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
717456.pdf
Mida:
643.06 KB
Format:
Adobe Portable Document Format