Newton's method for symmetric quartic polynomials
| dc.contributor.author | Campos, Beatriz | |
| dc.contributor.author | Garijo Real, Antonio | |
| dc.contributor.author | Jarque i Ribera, Xavier | |
| dc.contributor.author | Vindel, Pura | |
| dc.date.accessioned | 2017-03-17T10:06:20Z | |
| dc.date.available | 2018-11-01T06:10:19Z | |
| dc.date.issued | 2016-11-01 | |
| dc.date.updated | 2017-03-17T10:06:20Z | |
| dc.description.abstract | We investigate the parameter plane of the Newton's method applied to the family of quartic polynomials $p_{a,b}(z)=z^4+az^3+bz^2+az+1$, where $a$ and $b$ are real parameters. We divide the parameter plane $(a,b) \in \mathbb R^2$ into twelve open and connected {\it regions} where $p$, $p'$ and $p''$ have simple roots. In each of these regions we focus on the study of the Newton's operator acting on the Riemann sphere. | |
| dc.format.extent | 10 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 669703 | |
| dc.identifier.issn | 0096-3003 | |
| dc.identifier.uri | https://hdl.handle.net/2445/108550 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier B.V. | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1016/j.amc.2016.06.021 | |
| dc.relation.ispartof | Applied Mathematics and Computation, 2016, vol. 290, p. 326-335 | |
| dc.relation.uri | https://doi.org/10.1016/j.amc.2016.06.021 | |
| dc.rights | cc-by-nc-nd (c) Elsevier B.V., 2016 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Sistemes dinàmics diferenciables | |
| dc.subject.other | Differentiable dynamical systems | |
| dc.title | Newton's method for symmetric quartic polynomials | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1