Newton's method for symmetric quartic polynomials

dc.contributor.authorCampos, Beatriz
dc.contributor.authorGarijo Real, Antonio
dc.contributor.authorJarque i Ribera, Xavier
dc.contributor.authorVindel, Pura
dc.date.accessioned2017-03-17T10:06:20Z
dc.date.available2018-11-01T06:10:19Z
dc.date.issued2016-11-01
dc.date.updated2017-03-17T10:06:20Z
dc.description.abstractWe investigate the parameter plane of the Newton's method applied to the family of quartic polynomials $p_{a,b}(z)=z^4+az^3+bz^2+az+1$, where $a$ and $b$ are real parameters. We divide the parameter plane $(a,b) \in \mathbb R^2$ into twelve open and connected {\it regions} where $p$, $p'$ and $p''$ have simple roots. In each of these regions we focus on the study of the Newton's operator acting on the Riemann sphere.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec669703
dc.identifier.issn0096-3003
dc.identifier.urihttps://hdl.handle.net/2445/108550
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.amc.2016.06.021
dc.relation.ispartofApplied Mathematics and Computation, 2016, vol. 290, p. 326-335
dc.relation.urihttps://doi.org/10.1016/j.amc.2016.06.021
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.otherDifferentiable dynamical systems
dc.titleNewton's method for symmetric quartic polynomials
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
669703.pdf
Mida:
877.42 KB
Format:
Adobe Portable Document Format