Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) De Chiara, Francesco et al., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/178978

The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Non-alcoholic fatty liver affects about 25% of global adult population. On the long-term, it is associated with extra-hepatic compliances, multiorgan failure, and death. Various invasive and non-invasive methods are employed for its diagnosis such as liver biopsies, CT scan, MRI, and numerous scoring systems. However, the lack of accuracy and reproducibility represents one of the biggest limitations of evaluating the effectiveness of drug candidates in clinical trials. Organ-on-chips (OOC) are emerging as a cost-effective tool to reproduce in vitro the main NAFLD’s pathogenic features for drug screening purposes. Those platforms have reached a high degree of complexity that generate an unprecedented amount of both structured and unstructured data that outpaced our capacity to analyze the results. The addition of artificial intelligence (AI) layer for data analysis and interpretation enables those platforms to reach their full potential. Furthermore, the use of them do not require any ethic and legal regulation. In this review, we discuss the synergy between OOC and AI as one of the most promising ways to unveil potential therapeutic targets as well as the complex mechanism(s) underlying NAFLD.

Citació

Citació

DE CHIARA, Francesco, FERRAT MIÑANA, Ainhoa, RAMÓN AZCÓN, Javier. The Synergy between Organ-on-a-Chip and Artificial Intelligence for the Study of NAFLD: From Basic Science to Clinical Research. _Biomedicines 2021_. vol. 9. Vol. 3, núm. 248. [consulta: 7 de febrer de 2026]. ISSN: 2227-9059. [Disponible a: https://hdl.handle.net/2445/178978]

Exportar metadades

JSON - METS

Compartir registre