Filtered A-infinity structures in complex geometry

dc.contributor.authorCirici, Joana
dc.contributor.authorSopena Gilboy, Anna
dc.date.accessioned2023-01-10T10:02:17Z
dc.date.available2023-01-10T10:02:17Z
dc.date.issued2022
dc.date.updated2023-01-10T10:02:17Z
dc.description.abstractWe prove a filtered version of the Homotopy Transfer Theorem which gives an $A$-infinity algebra structure on any page of the spectral sequence associated to a filtered dg-algebra. We then develop various applications to the study of the geometry and topology of complex manifolds, using the Hodge filtration, as well as to complex algebraic varieties, using mixed Hodge theory.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec727827
dc.identifier.issn0002-9939
dc.identifier.urihttps://hdl.handle.net/2445/191978
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1090/proc/16009
dc.relation.ispartofProceedings of the American Mathematical Society, 2022, vol. 150, num. 9, p. 4067-4082
dc.relation.urihttps://doi.org/10.1090/proc/16009
dc.rightscc-by-nc-nd (c) American Mathematical Society (AMS), 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria de l'homotopia
dc.subject.classificationGeometria diferencial
dc.subject.classificationTeoria de Hodge
dc.subject.classificationSingularitats (Matemàtica)
dc.subject.otherHomotopy theory
dc.subject.otherDifferential geometry
dc.subject.otherHodge theory
dc.subject.otherSingularities (Mathematics)
dc.titleFiltered A-infinity structures in complex geometry
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
727827.pdf
Mida:
340.3 KB
Format:
Adobe Portable Document Format