Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/124746
A separation theorem for entire transcendental maps
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We study the distribution of periodic points for a wide class of maps, namely entire transcendental functions of finite order and with bounded set of singular values, or compositions thereof. Fix $p\in\N$ and assume that all dynamic rays which are invariant under fp land. An interior p-periodic point is a fixed point of fp which is not the landing point of any periodic ray invariant under fp. Points belonging to attracting, Siegel or Cremer cycles are examples of interior periodic points. For functions as above we show that rays which are invariant under fp, together with their landing points, separate the plane into finitely many regions, each containing exactly one interior p−periodic point or one parabolic immediate basin invariant under fp. This result generalizes the Goldberg-Milnor Separation Theorem for polynomials, and has several corollaries. It follows, for example, that two periodic Fatou components can always be separated by a pair of periodic rays landing together; that there cannot be Cremer points on the boundary of Siegel discs; that 'hidden components' of a bounded Siegel disc have to be either wandering domains or preperiodic to the Siegel disc itself; or that there are only finitely many non-repelling cycles of any given period, regardless of the number of singular values.
Matèries
Matèries (anglès)
Citació
Citació
BENINI, Anna miriam, FAGELLA RABIONET, Núria. A separation theorem for entire transcendental maps. _Proceedings of the London Mathematical Society_. 2015. Vol. 110, núm. 2, pàgs. 291-324. [consulta: 20 de gener de 2026]. ISSN: 0024-6115. [Disponible a: https://hdl.handle.net/2445/124746]