A separation theorem for entire transcendental maps

dc.contributor.authorBenini, Anna Miriam
dc.contributor.authorFagella Rabionet, Núria
dc.date.accessioned2018-09-21T09:10:34Z
dc.date.available2018-09-21T09:10:34Z
dc.date.issued2015-06-13
dc.date.updated2018-09-21T09:10:34Z
dc.description.abstractWe study the distribution of periodic points for a wide class of maps, namely entire transcendental functions of finite order and with bounded set of singular values, or compositions thereof. Fix $p\in\N$ and assume that all dynamic rays which are invariant under fp land. An interior p-periodic point is a fixed point of fp which is not the landing point of any periodic ray invariant under fp. Points belonging to attracting, Siegel or Cremer cycles are examples of interior periodic points. For functions as above we show that rays which are invariant under fp, together with their landing points, separate the plane into finitely many regions, each containing exactly one interior p−periodic point or one parabolic immediate basin invariant under fp. This result generalizes the Goldberg-Milnor Separation Theorem for polynomials, and has several corollaries. It follows, for example, that two periodic Fatou components can always be separated by a pair of periodic rays landing together; that there cannot be Cremer points on the boundary of Siegel discs; that 'hidden components' of a bounded Siegel disc have to be either wandering domains or preperiodic to the Siegel disc itself; or that there are only finitely many non-repelling cycles of any given period, regardless of the number of singular values.
dc.format.extent34 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec643687
dc.identifier.issn0024-6115
dc.identifier.urihttps://hdl.handle.net/2445/124746
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1112/plms/pdu047
dc.relation.ispartofProceedings of the London Mathematical Society, 2015, vol. 110, num. 2, p. 291-324
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/277691/EU//HEVO
dc.relation.urihttps://doi.org/10.1112/plms/pdu047
dc.rights(c) London Mathematical Society, 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions transcendents
dc.subject.otherTranscendental functions
dc.titleA separation theorem for entire transcendental maps
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
643687.pdf
Mida:
918.6 KB
Format:
Adobe Portable Document Format