Combination forecasts of tourism demand with machine learning models

dc.contributor.authorClavería González, Óscar
dc.contributor.authorMonte Moreno, Enric
dc.contributor.authorTorra Porras, Salvador
dc.date.accessioned2016-01-20T07:17:27Z
dc.date.available2018-07-01T22:01:30Z
dc.date.issued2016
dc.date.updated2016-01-20T07:17:28Z
dc.description.abstractThe main objective of this study is to analyse whether the combination of regional predictions generated with machine learning (ML) models leads to improved forecast accuracy. With this aim we construct one set of forecasts by estimating models on the aggregate series, another set by using the same models to forecast the individual series prior to aggregation, and then we compare the accuracy of both approaches. We use three ML techniques: Support Vector Regression (SVR), Gaussian Process Regression (GPR) and Neural Network (NN) models. We use an ARMA model as a benchmark. We find that ML methods improve their forecasting performance with respect to the benchmark as forecast horizons increase, suggesting the suitability of these techniques for mid- and long-term forecasting. In spite of the fact that the disaggregated approach yields more accurate predictions, the improvement over the benchmark occurs for shorter forecast horizons with the direct approach.
dc.format.extent4 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec656338
dc.identifier.issn1350-4851
dc.identifier.urihttps://hdl.handle.net/2445/68886
dc.language.isoeng
dc.publisherTaylor and Francis
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1080/13504851.2015.1078441
dc.relation.ispartofApplied Economics Letters, 2016, vol. 23, num. 6, p. 428-431
dc.relation.urihttp://dx.doi.org/10.1080/13504851.2015.1078441
dc.rights(c) Taylor and Francis, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationPrevisió
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationDistribució de Gauss
dc.subject.classificationAnàlisi de regressió
dc.subject.classificationAprenentatge automàtic
dc.subject.otherForecasting
dc.subject.otherNeural networks (Computer science)
dc.subject.otherGaussian distribution
dc.subject.otherRegression analysis
dc.subject.otherMachine learning
dc.titleCombination forecasts of tourism demand with machine learning models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers