Neural networks for estimating Macro Asset Pricing model in football clubs

dc.contributor.authorAlaminos Aguilera, David
dc.contributor.authorEsteban Labrador, Ignacio
dc.contributor.authorSalas Compas, M. Belén
dc.date.accessioned2023-07-07T09:07:05Z
dc.date.available2023-07-07T09:07:05Z
dc.date.issued2023-04-01
dc.date.updated2023-07-07T09:07:05Z
dc.description.abstractThe recent crisis caused by COVID-19 directly affected consumption habits and thestability sof financial markets. In particular, the football industry has been hit hard bythis pandemic and therefore has more volatile stock prices. Given this new scenario,further research is needed to accurately estimate the value of the shares of footballclubs. In this paper, we estimate an asset pricing model in football clubs with differentcompositions of risk nature using non-linear techniques of artificial neural networks.Usually, asset pricing models have been estimated with linear methods such as ordi-nary least squares (...)
dc.format.extent19 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec737118
dc.identifier.issn1550-1949
dc.identifier.urihttps://hdl.handle.net/2445/200392
dc.language.isoeng
dc.publisherJohn Wiley & Sons
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/isaf.1532
dc.relation.ispartofIntelligent Systems in Accounting, Finance and Management, 2023, vol. 30, p. 57-75
dc.relation.urihttps://doi.org/10.1002/isaf.1532
dc.rights(c) John Wiley & Sons, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/*
dc.sourceArticles publicats en revistes (Empresa)
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationEquips de futbol
dc.subject.classificationModels no lineals (Estadística)
dc.subject.otherNeural networks (Computer science)
dc.subject.otherSoccer team
dc.subject.otherNonlinear models (Statistics)
dc.titleNeural networks for estimating Macro Asset Pricing model in football clubs
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
737118.pdf
Mida:
427.2 KB
Format:
Adobe Portable Document Format