Carregant...
Miniatura

Tipus de document

Informe

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Laia Domingo Colomer, 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/170788

Deep learning for predictive maintenance of rolling bearings

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The monitoring of machine health has become of great importance in the industry in the recent years. Unexpected equipment failures can lead to catastrophic consequences, such as production downtime and costly equipment replacement. Rolling bearings are one of the most delicate components of rotating equipment, being a common cause of machine failures. For this reason, predictive maintenance techniques of rolling bearings are fundamental to preserve the health of a machine. In this project, we present a deep learning approach to predict bearing failures in their early development. All methodologies are data-driven, therefore they do not assume any expert knowledge on the field nor require any information about the equipment’s operating conditions. For this reason, this approach is versatile and can be used to diagnose multiple machines.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2020, Tutor: Jordi Vitrià i Marca

Citació

Citació

DOMINGO COLOMER, Laia. Deep learning for predictive maintenance of rolling bearings. [consulta: 22 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/170788]

Exportar metadades

JSON - METS

Compartir registre