Deep learning for predictive maintenance of rolling bearings

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorDomingo Colomer, Laia
dc.date.accessioned2020-09-22T08:04:53Z
dc.date.available2020-09-22T08:04:53Z
dc.date.issued2020-06-25
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2020, Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] The monitoring of machine health has become of great importance in the industry in the recent years. Unexpected equipment failures can lead to catastrophic consequences, such as production downtime and costly equipment replacement. Rolling bearings are one of the most delicate components of rotating equipment, being a common cause of machine failures. For this reason, predictive maintenance techniques of rolling bearings are fundamental to preserve the health of a machine. In this project, we present a deep learning approach to predict bearing failures in their early development. All methodologies are data-driven, therefore they do not assume any expert knowledge on the field nor require any information about the equipment’s operating conditions. For this reason, this approach is versatile and can be used to diagnose multiple machines.ca
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/170788
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Laia Domingo Colomer, 2020
dc.rightscodi: GPL (c) Laia Domingo Colomer, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationManteniment industrial
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationMaquinària
dc.subject.otherMachine learning
dc.subject.otherPlant maintenance
dc.subject.otherMaster's theses
dc.subject.otherMachines
dc.titleDeep learning for predictive maintenance of rolling bearingsca
dc.typeinfo:eu-repo/semantics/reportca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
170788.pdf
Mida:
2.43 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
PFM_Bearing_Fault_Detection-master.zip
Mida:
657.92 MB
Format:
ZIP file
Descripció:
Codi font