A New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines
| dc.contributor.author | Álvarez Gutiérrez, David | |
| dc.contributor.author | Sánchez Lasheras, Fernando | |
| dc.contributor.author | Martín Sánchez, Vicente | |
| dc.contributor.author | Suárez Gómez, Sergio Luis | |
| dc.contributor.author | Moreno Aguado, Víctor | |
| dc.contributor.author | Moratalla Navarro, Ferrán | |
| dc.contributor.author | Molina de la Torre, Antonio José | |
| dc.date.accessioned | 2022-04-28T14:16:28Z | |
| dc.date.available | 2022-04-28T14:16:28Z | |
| dc.date.issued | 2022-03-23 | |
| dc.date.updated | 2022-04-28T07:30:36Z | |
| dc.description.abstract | Genome-wide association studies (GWAS) are observational studies of a large set of genetic variants, whose aim is to find those that are linked to a certain trait or illness. Due to the multivariate nature of these kinds of studies, machine learning methodologies have been already applied in them, showing good performance. This work presents a new methodology for GWAS that makes use of extreme learning machines and differential evolution. The proposed methodology was tested with the help of the genetic information (370,750 single-nucleotide polymorphisms) of 2049 individuals, 1076 of whom suffer from colorectal cancer. The possible relationship of 10 different pathways with this illness was tested. The results achieved showed that the proposed methodology is suitable for detecting relevant pathways for the trait under analysis with a lower computational cost than other machine learning methodologies previously proposed. | |
| dc.format.extent | 21 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/185200 | |
| dc.language.iso | eng | |
| dc.publisher | MDPI AG | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.3390/math10071024 | |
| dc.relation.ispartof | Mathematics, 2022, vol. 10, num. 7, p. 1024 | |
| dc.relation.uri | https://doi.org/10.3390/math10071024 | |
| dc.rights | cc by (c) Álvarez Gutiérrez, David et al., 2022 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Ciències Clíniques) | |
| dc.subject.classification | Aprenentatge automàtic | |
| dc.subject.classification | Genomes | |
| dc.subject.classification | Càncer colorectal | |
| dc.subject.classification | Polimorfisme genètic | |
| dc.subject.other | Machine learning | |
| dc.subject.other | Genomes | |
| dc.subject.other | Colorectal cancer | |
| dc.subject.other | Genetic polymorphisms | |
| dc.title | A New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- mathematics-10-01024.pdf
- Mida:
- 10.36 MB
- Format:
- Adobe Portable Document Format