A New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines

dc.contributor.authorÁlvarez Gutiérrez, David
dc.contributor.authorSánchez Lasheras, Fernando
dc.contributor.authorMartín Sánchez, Vicente
dc.contributor.authorSuárez Gómez, Sergio Luis
dc.contributor.authorMoreno Aguado, Víctor
dc.contributor.authorMoratalla Navarro, Ferrán
dc.contributor.authorMolina de la Torre, Antonio José
dc.date.accessioned2022-04-28T14:16:28Z
dc.date.available2022-04-28T14:16:28Z
dc.date.issued2022-03-23
dc.date.updated2022-04-28T07:30:36Z
dc.description.abstractGenome-wide association studies (GWAS) are observational studies of a large set of genetic variants, whose aim is to find those that are linked to a certain trait or illness. Due to the multivariate nature of these kinds of studies, machine learning methodologies have been already applied in them, showing good performance. This work presents a new methodology for GWAS that makes use of extreme learning machines and differential evolution. The proposed methodology was tested with the help of the genetic information (370,750 single-nucleotide polymorphisms) of 2049 individuals, 1076 of whom suffer from colorectal cancer. The possible relationship of 10 different pathways with this illness was tested. The results achieved showed that the proposed methodology is suitable for detecting relevant pathways for the trait under analysis with a lower computational cost than other machine learning methodologies previously proposed.
dc.format.extent21 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/185200
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/math10071024
dc.relation.ispartofMathematics, 2022, vol. 10, num. 7, p. 1024
dc.relation.urihttps://doi.org/10.3390/math10071024
dc.rightscc by (c) Álvarez Gutiérrez, David et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationGenomes
dc.subject.classificationCàncer colorectal
dc.subject.classificationPolimorfisme genètic
dc.subject.otherMachine learning
dc.subject.otherGenomes
dc.subject.otherColorectal cancer
dc.subject.otherGenetic polymorphisms
dc.titleA New Algorithm for Multivariate Genome Wide Association Studies Based on Differential Evolution and Extreme Learning Machines
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
mathematics-10-01024.pdf
Mida:
10.36 MB
Format:
Adobe Portable Document Format