Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/221816
Penrose singularity theorems
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In this work, we will review Penrose singularity theorems. Following the publication of Einstein’s General Theory of Relativity in 1916, the possible existence of singularities in relativistic space-times garnered attention, which initiated a significant debate where various ideas were proposed in order to provide meaning to singularities. In 1965, Roger Penrose published the first modern singularity theorems, which generalised the existence of singularities in any relativistic space-time under certain topological conditions. To present the theorems in an accessible and coherent way, we will follow the structure of Penrose’s publication (as referenced in [17]). We will first establish the causal and chronological order relations between points in space-time. Subsequently, we will address the physical viability of the space-times. To do so, we will study the Cauchy problem and the necessary conditions that a relativistic space-time must satisfy to avoid containing time loops. In the final section, we will explore geodesic congruences in the space-time by applying general relativity, and we will define the concept of trapped surfaces, which is a key notion in Penrose developments. By following this line of reasoning, we will be able to prove the existence of incomplete geodesics defined within space-time. Therefore, we will observe the existence of singularities at the end and the beginning of geodesics on space-times.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2025, Director: Ignasi Mundet i Riera
Citació
Col·leccions
Citació
LÓPEZ IZQUIERDO, Germán. Penrose singularity theorems. [consulta: 15 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/221816]