Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

memòria: cc-by-nc-sa (c) Fernando Moral Algaba, 2017
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/119781

Redes completamente convolucionales en la segmentación semántica de lesiones melanocíticas

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] Skin cancer is the more common type of cancer. Melanoma, that begins at melanocytes, is the most aggressive type of skin cancer and responsible of about 90 % of total deaths caused by this disease. Early diagnosis is the best way to defeat melanoma and can increase survival rate to near 100 %. Studies on Automated image detection of skin lesion has evolved achieving high rates of accuracy on melanoma detection and classification. Deep learning and Fully Convolutional Networks has become and useful tool on image analysis. This project explores the application of FCNs on semantic segmentation over combinations of two major datasets, images from dermatologic databases and skin mole images captured by cellular phone camera. Trained nets has been tested over another two datasets of unseen images of skin moles and dermatologic images. Data generated at this study evidence high accuracy, precision, sensitivity and speci city rates despite the small database size, which is composed by only a few hundreds images.

Descripció

Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Simone Balocco

Citació

Citació

MORAL ALGABA, Fernando. Redes completamente convolucionales en la segmentación semántica de lesiones melanocíticas. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/119781]

Exportar metadades

JSON - METS

Compartir registre