Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/119781
Redes completamente convolucionales en la segmentación semántica de lesiones melanocíticas
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Skin cancer is the more common type of cancer. Melanoma, that begins at melanocytes, is the most aggressive type of skin cancer and responsible of about 90 % of total deaths caused by this disease. Early diagnosis is the best way to defeat melanoma and can increase survival rate to near 100 %.
Studies on Automated image detection of skin lesion has evolved achieving high rates of accuracy on melanoma detection and classification.
Deep learning and Fully Convolutional Networks has become and useful tool on image analysis. This project explores the application of FCNs on semantic segmentation over combinations of two major datasets, images from dermatologic databases and skin mole images captured by cellular phone camera.
Trained nets has been tested over another two datasets of unseen images of skin moles and dermatologic images. Data generated at this study evidence high accuracy, precision, sensitivity and speci city rates despite the small database size, which is composed by only a few hundreds images.
Descripció
Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Simone Balocco
Citació
Citació
MORAL ALGABA, Fernando. Redes completamente convolucionales en la segmentación semántica de lesiones melanocíticas. [consulta: 20 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/119781]