Redes completamente convolucionales en la segmentación semántica de lesiones melanocíticas

dc.contributor.advisorBalocco, Simone
dc.contributor.authorMoral Algaba, Fernando
dc.date.accessioned2018-02-13T09:57:45Z
dc.date.available2018-02-13T09:57:45Z
dc.date.issued2017-06-21
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Simone Baloccoca
dc.description.abstract[en] Skin cancer is the more common type of cancer. Melanoma, that begins at melanocytes, is the most aggressive type of skin cancer and responsible of about 90 % of total deaths caused by this disease. Early diagnosis is the best way to defeat melanoma and can increase survival rate to near 100 %. Studies on Automated image detection of skin lesion has evolved achieving high rates of accuracy on melanoma detection and classification. Deep learning and Fully Convolutional Networks has become and useful tool on image analysis. This project explores the application of FCNs on semantic segmentation over combinations of two major datasets, images from dermatologic databases and skin mole images captured by cellular phone camera. Trained nets has been tested over another two datasets of unseen images of skin moles and dermatologic images. Data generated at this study evidence high accuracy, precision, sensitivity and speci city rates despite the small database size, which is composed by only a few hundreds images.ca
dc.format.extent51 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/119781
dc.language.isospaca
dc.rightsmemòria: cc-by-nc-sa (c) Fernando Moral Algaba, 2017
dc.rightscodi: GPL (c) Fernando Moral Algaba, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationMelanomacat
dc.subject.classificationCàncer de pellcat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationDiagnòstic per la imatgeca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationReconeixement de formes (Informàtica)ca
dc.subject.otherMelanomaeng
dc.subject.otherSkin cancereng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherDiagnostic imagingen
dc.subject.otherMachine learningen
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherPattern recognition systemsen
dc.titleRedes completamente convolucionales en la segmentación semántica de lesiones melanocíticasca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
9.39 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
11.49 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria