Estudi sobre les superfícies de Riemann compactes

dc.contributor.advisorGarcía López, Ricardo, 1962-
dc.contributor.authorGené Verdés, Marçal
dc.date.accessioned2019-07-04T10:51:15Z
dc.date.available2019-07-04T10:51:15Z
dc.date.issued2019-01
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Ricardo García Lópezca
dc.description.abstract[en] The work presented is divided in three sections: the first is about covering spaces, placing the emphasize on the universal covering spaces, which are simply connected; the second describes several properties of Riemann’s surfaces, which are topological manifolds with an analytic structure; the last describes an approach to the study of compact Riemann’s surfaces by means of their universal covering space and, for the ones of genus 1, we classify the possible analytic structures on a topological torus.ca
dc.format.extent38 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/136501
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Marçal Gené Verdés, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationSuperfícies de Riemannca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationEspais analíticsca
dc.subject.classificationTopologia de baixa dimensióca
dc.subject.classificationTor (Geometria)ca
dc.subject.otherRiemann surfacesen
dc.subject.otherBachelor's theses
dc.subject.otherAnalytic spacesen
dc.subject.otherLow-dimensional topologyen
dc.subject.otherTorus (Geometry)en
dc.titleEstudi sobre les superfícies de Riemann compactesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
714.42 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria