Mètodes i models per a l'anàlisi de clústers

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorMorera de Frutos, Marc
dc.date.accessioned2021-11-23T10:01:02Z
dc.date.available2021-11-23T10:01:02Z
dc.date.issued2021-01-24
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Josep Fortiana Gregorica
dc.description.abstract[en] In this project we study clustering methods, focusing on the two most used classes of algorithms: partitional and hierarchical. We explore definition and performance of several methods, as well as some criteria to validate results. Then, we assess computational problems arising from adapting generic clustering methods to tackle large data sets, as well as algorithms designed with the goal of improving their performance in these cases. We include R code to demonstrate practical applications of clustering and to generate graphical visualizations.ca
dc.format.extent47 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/181389
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Marc Morera de Frutos, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAnàlisi de conglomeratsca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationAnàlisi multivariableca
dc.subject.classificationMineria de dadesca
dc.subject.classificationAlgorismes computacionalsca
dc.subject.otherCluster analysisen
dc.subject.otherBachelor's theses
dc.subject.otherMultivariate analysisen
dc.subject.otherData miningen
dc.subject.otherComputer algorithmsen
dc.titleMètodes i models per a l'anàlisi de clústersca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_marc_morera_de_frutos.pdf
Mida:
1.58 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.rar
Mida:
796.56 KB
Format:
Unknown data format
Descripció:
Codi font