Carregant...
Miniatura

Embargament

Document embargat fins el 2026-12-16

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/226880

From urban transport model diversity to user preferences: A multilayer perceptron prediction

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The research addresses the complexity of urban mobility, highlighting the need to select the appropriate transport model under the user’s perception and under the sustainable development of modern cities. Achieving equitable, efficient, and environmentally responsible mobility systems necessitates collaboration among public and private sectors, complemented by active societal participation. Utilizing a dataset of 593 survey responses, a Multilayer Perceptron neural network was implemented to predict individual mobility preferences by integrating behavioral, demographic, and infrastructural determinants, including age, gender, occupation, car ownership, and Taxi/VTC usage frequency. Three primary mobility types were identified: public, shared, and private transport. The results indicate that car ownership and Taxi/VTC use are the most significant positive predictors of private mobility, whereas younger respondents exhibit a higher probability of adopting shared transport options. Methodologically, the application of neural network modeling enables the detection of nonlinear interactions and latent behavioral patterns often overlooked by conventional statistical approaches, thereby enhancing predictive precision and interpretability. These findings underscore the complex, multidimensional nature of mobility decision-making and highlight the utility of artificial intelligence techniques in advancing the analysis of travel behavior. The study’s implications extend to the formulation of inclusive, data-driven transport policies aimed at improving equity, accessibility, and sustainability in urban mobility systems, reinforcing the relevance of machine learning as a tool for evidence-based urban planning and policy development.

Citació

Citació

GUILLÉN PUJADAS, Miguel, LIMA RUA, Orlando, ALAMINOS AGUILERA, David, VIZUETE LUCIANO, Emilio. From urban transport model diversity to user preferences: A multilayer perceptron prediction. _Soft Computing_. 2025. Vol. 30, núm. 769-786. [consulta: 21 de febrer de 2026]. ISSN: 1432-7643. [Disponible a: https://hdl.handle.net/2445/226880]

Exportar metadades

JSON - METS

Compartir registre