El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Sustained, Reversible, and Adaptive Non-Equilibrium Steady States of a Dissipative DNA-Based System

dc.contributor.authorNicholas, James D.
dc.contributor.authorGrosso, Erica del
dc.contributor.authordeMello, Andrew J.
dc.contributor.authorPuigmartí-Luis, Josep
dc.contributor.authorRicci, Francesco, 1977-
dc.contributor.authorSorrenti, Alessandro
dc.date.accessioned2025-12-04T13:53:50Z
dc.date.available2025-12-04T13:53:50Z
dc.date.issued2025-10-20
dc.date.updated2025-12-04T13:53:51Z
dc.description.abstractInspired by nature, researchers have developed several chemical fuel-driven supramolecular systems aimed at achieving improved kinetic control over their formation and functions. Alongside, DNA-based systems regulated by energy-dissipating mechanisms have been reported. However, the majority of these systems rely on batchwise additions of chemical fuels to closed reactors, resulting in transient non-equilibrium states that differ fundamentally from the sustained and highly adaptable non-equilibrium steady states (NESS) maintained by living systems through continuous energy dissipation. Here, we demonstrate sustained NESS of a dissipative DNA strand-displacement reaction achieved through the continuous supply of an RNA fuel to an open semi-batch reactor, using a custom automated setup that enables tunable fuel infusion rates and in situ analysis. Similar to biological NESS, our system dynamically adapts in real-time to subtle variations in fuel supply, achieving different steady-state levels of the strand-displacement reaction. Our approach demonstrates remarkable on-the-fly control over a dissipative DNA nanosystem, unachievable when working under batch conditions. Importantly, by fitting the experimental data to a kinetic model of the reaction network, we were able to confirm that the observed steady states correspond to true non-equilibrium compositions of the system.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec762131
dc.identifier.issn1433-7851
dc.identifier.pmid40884021
dc.identifier.urihttps://hdl.handle.net/2445/224681
dc.language.isoeng
dc.publisherWiley-VCH
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/anie.202512967
dc.relation.ispartofAngewandte Chemie-International Edition, 2025, vol. 64, num. 43
dc.relation.urihttps://doi.org/10.1002/anie.202512967
dc.rightscc-by-nc (c) Nicholas, James D. et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.classificationÀcids nucleics
dc.subject.classificationBiologia sintètica
dc.subject.otherNucleic acids
dc.subject.otherSynthetic biology
dc.titleSustained, Reversible, and Adaptive Non-Equilibrium Steady States of a Dissipative DNA-Based System
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
905801.pdf
Mida:
882.8 KB
Format:
Adobe Portable Document Format