Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/162057

Clustering analysis strategies for electron energy loss spectroscopy (EELS).

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this work, the use of cluster analysis algorithms, widely applied in the field of big data, is proposed to explore and analyse electron energy loss spectroscopy (EELS) data sets. Three different data clustering approaches have been tested both with simulated and experimental data from Fe3O4/Mn3O4 core/shell nanoparticles. The first method consists on applying data clustering directly to the acquired spectra. A second approach is to analyse spectral variance with principal component analysis (PCA) within a given data cluster. Lastly, data clustering on PCA score maps is discussed. The advantages and requirements of each approach are studied. Results demonstrate how clustering is able to recover compositional and oxidation state information from EELS data with minimal user input, giving great prospects for its usage in EEL spectroscopy.

Citació

Citació

TORRUELLA BESA, Pau, ESTRADÉ ALBIOL, Sònia, LÓPEZ-ORTEGA, Alberto, BARÓ, M. d., VARELA, María, PEIRÓ MARTÍNEZ, Francisca. Clustering analysis strategies for electron energy loss spectroscopy (EELS).. _Ultramicroscopy_. 2018. Vol. 185, núm. 42-48. [consulta: 10 de gener de 2026]. ISSN: 0304-3991. [Disponible a: https://hdl.handle.net/2445/162057]

Exportar metadades

JSON - METS

Compartir registre