Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222442
Solving the Time Dependent Schrödinger Equation using Machine Learning
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The time-dependent Schrödinger equation plays a central role in quantum physics, yet the methods used to solve it are typically computationally expensive. In this work, we use a Physics-Informed Neural Network approach to learn the dynamics of the quantum harmonic oscillator. Our model successfully reproduces the expected oscillatory motion of the coherent state and conserves energy with only very small deviations, with relative energy errors below 10−3. The method achieves extremely low infidelities with respect to the analytical results, of the order of 10−5. We also test the model on breathing mode dynamics, obtaining a low average infidelity of the order of 10−2 and a modest relative energy error around 10−2. These results show that Physics-Informed Neural
Networks can accurately learn and generalise solutions to the time-dependent Schr¨odinger equation, providing an efficient alternative to traditional solvers.
Descripció
Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Arnau Ríos Huguet
Matèries (anglès)
Citació
Col·leccions
Citació
BIRCH HARDWICK, Elizabeth. Solving the Time Dependent Schrödinger Equation using Machine Learning. [consulta: 28 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/222442]