Solving the Time Dependent Schrödinger Equation using Machine Learning

dc.contributor.advisorRios Huguet, Arnau
dc.contributor.authorBirch Hardwick, Elizabeth
dc.date.accessioned2025-07-22T07:31:19Z
dc.date.available2025-07-22T07:31:19Z
dc.date.issued2025-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2025, Tutor: Arnau Ríos Huguetca
dc.description.abstractThe time-dependent Schrödinger equation plays a central role in quantum physics, yet the methods used to solve it are typically computationally expensive. In this work, we use a Physics-Informed Neural Network approach to learn the dynamics of the quantum harmonic oscillator. Our model successfully reproduces the expected oscillatory motion of the coherent state and conserves energy with only very small deviations, with relative energy errors below 10−3. The method achieves extremely low infidelities with respect to the analytical results, of the order of 10−5. We also test the model on breathing mode dynamics, obtaining a low average infidelity of the order of 10−2 and a modest relative energy error around 10−2. These results show that Physics-Informed Neural Networks can accurately learn and generalise solutions to the time-dependent Schr¨odinger equation, providing an efficient alternative to traditional solvers.ca
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/222442
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Birch, 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationTeoria quànticacat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherQuantum theoryeng
dc.subject.otherMachine learningeng
dc.subject.otherBachelor's theseseng
dc.titleSolving the Time Dependent Schrödinger Equation using Machine Learningeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Birch-Hardwick-Elizabeth.pdf
Mida:
1.46 MB
Format:
Adobe Portable Document Format
Descripció: