Unsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group

dc.contributor.authorMosquera Orgueira, Adrian
dc.contributor.authorGonzález Pérez, Marta Sonia
dc.contributor.authorDiaz Arias, Jose
dc.contributor.authorRosiñol Dachs, Laura
dc.contributor.authorOriol, Albert
dc.contributor.authorTeruel, Ana Isabel
dc.contributor.authorMartinez Lopez, Joaquin
dc.contributor.authorPalomera, Luis
dc.contributor.authorGranell, Miguel
dc.contributor.authorBlanchard, Maria Jesus
dc.contributor.authorRubia, Javier de la
dc.contributor.authorLópez de la Guía, Ana
dc.contributor.authorRios, Rafael
dc.contributor.authorSureda, Anna
dc.contributor.authorHernandez, Miguel Teodoro
dc.contributor.authorBengoechea, Enrique
dc.contributor.authorCalasanz, María José
dc.contributor.authorGutierrez, Norma
dc.contributor.authorLuis Martin, Maria
dc.contributor.authorBladé, J. (Joan)
dc.contributor.authorLahuerta, Juan Jose
dc.contributor.authorSan Miguel, Jesús
dc.contributor.authorMateos, María Victoria
dc.contributor.authorThe Pethema/gem Cooperative Group
dc.date.accessioned2022-05-13T08:35:01Z
dc.date.available2022-05-13T08:35:01Z
dc.date.issued2022-04-01
dc.date.updated2022-05-12T10:19:52Z
dc.description.abstractThe International Staging System (ISS) and the Revised International Staging System (R-ISS) are commonly used prognostic scores in multiple myeloma (MM). These methods have significant gaps, particularly among intermediate-risk groups. The aim of this study was to improve risk stratification in newly diagnosed MM patients using data from three different trials developed by the Spanish Myeloma Group. For this, we applied an unsupervised machine learning clusterization technique on a set of clinical, biochemical and cytogenetic variables, and we identified two novel clusters of patients with significantly different survival. The prognostic precision of this clusterization was superior to those of ISS and R-ISS scores, and appeared to be particularly useful to improve risk stratification among R-ISS 2 patients. Additionally, patients assigned to the low-risk cluster in the GEM05 over 65 years trial had a significant survival benefit when treated with VMP as compared with VTD. In conclusion, we describe a simple prognostic model for newly diagnosed MM whose predictions are independent of the ISS and R-ISS scores. Notably, the model is particularly useful in order to re-classify R-ISS score 2 patients in 2 different prognostic subgroups. The combination of ISS, R-ISS and unsupervised machine learning clusterization brings a promising approximation to improve MM risk stratification.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina9308292
dc.identifier.pmid35468898
dc.identifier.urihttps://hdl.handle.net/2445/185522
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41408-022-00647-z
dc.relation.ispartofBlood Cancer Journal, 2022, vol. 12, num. 76
dc.relation.urihttps://doi.org/10.1038/s41408-022-00647-z
dc.rightscc by (c) Mosquera Orgueira, Adrian et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationMieloma múltiple
dc.subject.classificationDiagnòstic
dc.subject.classificationPronòstic mèdic
dc.subject.otherMultiple myeloma
dc.subject.otherPrognosis
dc.subject.otherDiagnosis
dc.titleUnsupervised machine learning improves risk stratification in newly diagnosed multiple myeloma: an analysis of the Spanish Myeloma Group
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
s41408-022-00647-z.pdf
Mida:
1.63 MB
Format:
Adobe Portable Document Format