Estimating country-specific incidence rates of rare cancers: comparative perfomance analysis of modeling approaches using European cancer registry data

dc.contributor.authorSalmerón, Diego
dc.contributor.authorBotta, Laura
dc.contributor.authorMartínez, José Miguel
dc.contributor.authorTrama, Annalisa
dc.contributor.authorGatta, Gemma
dc.contributor.authorBorràs Andrés, Josep Maria
dc.contributor.authorCapocaccia, Ricardo
dc.contributor.authorClèries Soler, Ramon
dc.date.accessioned2022-07-19T12:29:41Z
dc.date.available2022-07-19T12:29:41Z
dc.date.issued2022
dc.date.updated2022-07-19T12:29:41Z
dc.description.abstractEstimating incidence of rare cancers is challenging for exceptionally rare entities and in small populations. In a previous study, investigators in the Information Network on Rare Cancers (RARECARENet) provided Bayesian estimates of expected numbers of rare cancers and 95% credible intervals for 27 European countries, using data collected by population-based cancer registries. In that study, slightly different results were found by implementing a Poisson model in integrated nested Laplace approximation/WinBUGS platforms. In this study, we assessed the performance of a Poisson modeling approach for estimating rare cancer incidence rates, oscillating around an overall European average and using small-count data in different scenarios/computational platforms. First, we compared the performance of frequentist, empirical Bayes, and Bayesian approaches for providing 95% confidence/credible intervals for the expected rates in each country. Second, we carried out an empirical study using 190 rare cancers to assess different lower/upper bounds of a uniform prior distribution for the standard deviation of the random effects. For obtaining a reliable measure of variability for country-specific incidence rates, our results suggest the suitability of using 1 as the lower bound for that prior distribution and selecting the random-effects model through an averaged indicator derived from 2 Bayesian model selection criteria: the deviance information criterion and the Watanabe-Akaike information criterion.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec716056
dc.identifier.issn0002-9262
dc.identifier.pmid34718388
dc.identifier.urihttps://hdl.handle.net/2445/187901
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/aje/kwab262
dc.relation.ispartofAmerican Journal of Epidemiology, 2022, vol. 191, num. 3, p. 487-498
dc.relation.urihttps://doi.org/10.1093/aje/kwab262
dc.rightscc by (c) Salmerón, Diego et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Ciències Clíniques)
dc.subject.classificationCàncer
dc.subject.classificationEstimació d'un paràmetre
dc.subject.classificationEpidemiologia
dc.subject.otherCancer
dc.subject.otherParameter estimation
dc.subject.otherEpidemiology
dc.titleEstimating country-specific incidence rates of rare cancers: comparative perfomance analysis of modeling approaches using European cancer registry data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
716056.pdf
Mida:
386.18 KB
Format:
Adobe Portable Document Format