Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/159485
Generating synthetic intestine images
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] Capsule endoscopy is a non-invasive medical procedure used to record images of the gastrointestinal tract. While this method is a better alternative for patients, it presents a difficulty to doctors who need to go over as much as 50000 images. Scientists are developing machine learning algorithms that will automatically throw away images free of any anomalies. Like other medical applications, however, available data to train such models is sparse. Therefore, we attempt to create synthetic images that can be used as substitution. For the purpose we have used generative adversarial networks (GANs) as they have recently shown great promise for problems like this one. Training a classifier on both the real and synthetic data, we achieve an increase in the classification accuracy for a dataset of intestine images.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Santi Seguí Mesquida
Citació
Citació
IVANOV, Stefan. Generating synthetic intestine images. [consulta: 28 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/159485]