Generating synthetic intestine images

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.authorIvanov, Stefan
dc.date.accessioned2020-05-11T09:22:45Z
dc.date.available2020-05-11T09:22:45Z
dc.date.issued2019-06-28
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Santi Seguí Mesquidaca
dc.description.abstract[en] Capsule endoscopy is a non-invasive medical procedure used to record images of the gastrointestinal tract. While this method is a better alternative for patients, it presents a difficulty to doctors who need to go over as much as 50000 images. Scientists are developing machine learning algorithms that will automatically throw away images free of any anomalies. Like other medical applications, however, available data to train such models is sparse. Therefore, we attempt to create synthetic images that can be used as substitution. For the purpose we have used generative adversarial networks (GANs) as they have recently shown great promise for problems like this one. Training a classifier on both the real and synthetic data, we achieve an increase in the classification accuracy for a dataset of intestine images.ca
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/159485
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Stefan Ivanov, 2019
dc.rightscodi: GPL (c) Stefan Ivanov, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationGastroscòpia
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationAlgorismes computacionals
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.otherGastroscopy
dc.subject.otherMachine learning
dc.subject.otherMaster's theses
dc.subject.otherAlgoritmos computacionales
dc.subject.otherNeural networks (Computer science)
dc.titleGenerating synthetic intestine imagesca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 3 de 3
Carregant...
Miniatura
Nom:
overview.pdf
Mida:
27.99 KB
Format:
Adobe Portable Document Format
Descripció:
overview
Carregant...
Miniatura
Nom:
159485.pdf
Mida:
7.98 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
41.99 MB
Format:
ZIP file
Descripció:
Codi font