Positioning and clustering of the world's top tourist destinations by means of dimensionality reduction techniques for categorical data

dc.contributor.authorClavería González, Óscar
dc.contributor.authorPoluzzi, Alessio
dc.date.accessioned2016-04-13T07:31:29Z
dc.date.available2019-03-01T06:10:14Z
dc.date.issued2017-03
dc.date.updated2016-04-13T07:31:35Z
dc.description.abstractThis study aims to cluster the world's top tourist destinations based on the growth of the main tourism indicators over the period between 2000 and 2010. It ranks the destinations with respect to the average growth rate over the sample period. The results find that both China and Turkey are at the top of the rankings of all variables. By assigning a numerical value to each country corresponding to its position, a Spearman's coefficient is calculated and a negative correlation found between a destination's dependency on tourism and the profitability of the tourism activity. Finally, several multivariate techniques for dimensionality reduction are used to cluster all destinations according to their positioning. Three groups are obtained: China, Turkey, and the rest of the destinations. These results show that the persistent growth of the tourism industry poses different challenges in different markets regarding destination marketing and management.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec659295
dc.identifier.issn2212-571X
dc.identifier.urihttps://hdl.handle.net/2445/97323
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.jdmm.2016.01.008
dc.relation.ispartofJournal of Destination Marketing & Management, 2016, vol. 6, num. 1, p. 22-32
dc.relation.urihttp://dx.doi.org/10.1016/j.jdmm.2016.01.008
dc.rightscc-by-nc-nd (c) Elsevier, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Econometria, Estadística i Economia Aplicada)
dc.subject.classificationDesenvolupament econòmic
dc.subject.classificationTurisme
dc.subject.classificationGeografia del turisme
dc.subject.otherEconomic development
dc.subject.otherTourism
dc.subject.otherTourism geography
dc.titlePositioning and clustering of the world's top tourist destinations by means of dimensionality reduction techniques for categorical data
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
659295.pdf
Mida:
1.09 MB
Format:
Adobe Portable Document Format