Carregant...
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/143897
Unsupervised representation learning for medical imaging
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] The aim of this project is to achieve good image representations through the use of Deep Learning technologies which are part of a broader family of Artificial Intelligence methods named Machine Learning. These image representations are vectors of representative float numbers called embeddings that, for the project, are focused on the entire digestive aparatus for medical purposes. Triplet loss is used altogether with a state of the art Convolutional Neural Network, ResNet, in order to achieve this goal. A series of tests
are done in order to compare different training approaches of the ResNet model, seeking for the best image representations in the domain of the digestive aparatus. It is shown that ImageNet transfer learning underperforms with respect to not applying transfer learning for really specialized domains. To conclude, it is found that unsupervised representation learning through the use of Triplet loss enables transfer learning for specialized image domains such as the digestive aparatus.
Descripció
Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Santi Seguí Mesquida
Citació
Citació
GARCIA SANCHEZ, Albert. Unsupervised representation learning for medical imaging. [consulta: 25 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/143897]