Unsupervised representation learning for medical imaging

dc.contributor.advisorSeguí Mesquida, Santi
dc.contributor.authorGarcia Sanchez, Albert
dc.date.accessioned2019-11-05T08:51:41Z
dc.date.available2019-11-05T08:51:41Z
dc.date.issued2019-06-27
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2019, Director: Santi Seguí Mesquidaca
dc.description.abstract[en] The aim of this project is to achieve good image representations through the use of Deep Learning technologies which are part of a broader family of Artificial Intelligence methods named Machine Learning. These image representations are vectors of representative float numbers called embeddings that, for the project, are focused on the entire digestive aparatus for medical purposes. Triplet loss is used altogether with a state of the art Convolutional Neural Network, ResNet, in order to achieve this goal. A series of tests are done in order to compare different training approaches of the ResNet model, seeking for the best image representations in the domain of the digestive aparatus. It is shown that ImageNet transfer learning underperforms with respect to not applying transfer learning for really specialized domains. To conclude, it is found that unsupervised representation learning through the use of Triplet loss enables transfer learning for specialized image domains such as the digestive aparatus.ca
dc.format.extent57 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/143897
dc.language.isoengca
dc.rightsmemòria: cc-by-sa (c) Albert Garcia Sanchez, 2019
dc.rightscodi: GPL (c) Albert Garcia Sanchez, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationCàpsula endoscòpicaca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationImatges mèdiquesca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationAparell digestiuca
dc.subject.otherMachine learningen
dc.subject.otherCapsule endoscopyen
dc.subject.otherComputer softwareen
dc.subject.otherImaging systems in medicineen
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherBachelor's thesesen
dc.subject.otherDigestive organsen
dc.titleUnsupervised representation learning for medical imagingca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
64.79 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
7.37 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria