Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Unceta, Irene et al., 2020
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/174914

Environmental adaptation and differential replication in machine learning

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

When deployed in the wild, machine learning models are usually confronted withan environment that imposes severe constraints. As this environment evolves, so do these constraints.As a result, the feasible set of solutions for the considered need is prone to change in time. We referto this problem as that of environmental adaptation. In this paper, we formalize environmentaladaptation and discuss how it differs from other problems in the literature. We propose solutionsbased on differential replication, a technique where the knowledge acquired by the deployed modelsis reused in specific ways to train more suitable future generations. We discuss different mechanismsto implement differential replications in practice, depending on the considered level of knowledge.Finally, we present seven examples where the problem of environmental adaptation can be solvedthrough differential replication in real-life applications.

Citació

Citació

UNCETA, Irene, NIN, Jordi, PUJOL VILA, Oriol. Environmental adaptation and differential replication in machine learning. _Entropy_. 2020. Vol. 22, núm. 10. [consulta: 22 de desembre de 2025]. ISSN: 1099-4300. [Disponible a: https://hdl.handle.net/2445/174914]

Exportar metadades

JSON - METS

Compartir registre