El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Environmental adaptation and differential replication in machine learning

dc.contributor.authorUnceta, Irene
dc.contributor.authorNin, Jordi
dc.contributor.authorPujol Vila, Oriol
dc.date.accessioned2021-03-11T11:07:37Z
dc.date.available2021-03-11T11:07:37Z
dc.date.issued2020-10-03
dc.date.updated2021-03-11T11:07:37Z
dc.description.abstractWhen deployed in the wild, machine learning models are usually confronted withan environment that imposes severe constraints. As this environment evolves, so do these constraints.As a result, the feasible set of solutions for the considered need is prone to change in time. We referto this problem as that of environmental adaptation. In this paper, we formalize environmentaladaptation and discuss how it differs from other problems in the literature. We propose solutionsbased on differential replication, a technique where the knowledge acquired by the deployed modelsis reused in specific ways to train more suitable future generations. We discuss different mechanismsto implement differential replications in practice, depending on the considered level of knowledge.Finally, we present seven examples where the problem of environmental adaptation can be solvedthrough differential replication in real-life applications.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec703534
dc.identifier.issn1099-4300
dc.identifier.urihttps://hdl.handle.net/2445/174914
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/e22101122
dc.relation.ispartofEntropy, 2020, vol. 22, num. 10
dc.relation.urihttps://doi.org/10.3390/e22101122
dc.rightscc-by (c) Unceta, Irene et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationSelecció natural
dc.subject.otherMachine learning
dc.subject.otherNatural selection
dc.titleEnvironmental adaptation and differential replication in machine learning
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
703534.pdf
Mida:
561.18 KB
Format:
Adobe Portable Document Format