Carregant...
Fitxers
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/125453
Recurrent neural networks for churn prediction
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] This project is based on a probabilistic Deep learning model called WTTE-RNN that applies recurrent neural networks along with survival analysis in order to model the distribution of time between specific events. The main motivation of the application of survival analysis is its adjustment to recurrent events, unlike the basic hypothesis of this theory which assumes that the existence of one event implies the end of data
entry. In order to understand the main parts that constitute the model, an extensive section of this project addresses Deep learning and Survival Analysis. The approach of the model as a business tool for churn prediction is also important, in order to show how the knowledge acquired during the Mathematics degree can serve as a tool in the business strategy direction and so as a link with the Business degree.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Jordi Vitrià i Marca i Salvador Torra Porras
Citació
Col·leccions
Citació
COMAS TURRÓ, Montserrat. Recurrent neural networks for churn prediction. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/125453]