Parameters from site classification to harmonize MRI clinical studies: Application to a multi-site Parkinson's disease dataset

dc.contributor.authorMonté Rubio, Gemma C.
dc.contributor.authorSegura i Fàbregas, Bàrbara
dc.contributor.authorStrafella, Antonio P.
dc.contributor.authorEimeren, Thilo van
dc.contributor.authorIbarretxe Bilbao, Naroa
dc.contributor.authorDíez Cirarda, María
dc.contributor.authorEggers, Carsten
dc.contributor.authorLucas Jiménez, Olaia
dc.contributor.authorOjeda, Natalia
dc.contributor.authorPeña Lasa, Javier
dc.contributor.authorRuppert, Marina C.
dc.contributor.authorSala Llonch, Roser
dc.contributor.authorTheis, Hendrik
dc.contributor.authorUribe, Carme
dc.contributor.authorJunqué i Plaja, Carme, 1955-
dc.date.accessioned2022-09-29T12:20:51Z
dc.date.available2022-09-29T12:20:51Z
dc.date.issued2022-03-19
dc.date.updated2022-09-29T12:20:51Z
dc.description.abstractMulti-site MRI datasets are crucial for big data research. However, neuroimaging studies must face the batch effect. Here, we propose an approach that uses the predictive probabilities provided by Gaussian processes (GPs) to harmonize clinical-based studies. A multi-site dataset of 216 Parkinson's disease (PD) patients and 87 healthy subjects (HS) was used. We performed a site GP classification using MRI data. The outcomes estimated from this classification, redefined like Weighted HARMonization PArameters (WHARMPA), were used as regressors in two different clinical studies: A PD versus HS machine learning classification using GP, and a VBM comparison (FWE-p < .05, k = 100). Same studies were also conducted using conventional Boolean site covariates, and without information about site belonging. The results from site GP classification provided high scores, balanced accuracy (BAC) was 98.39% for grey matter images. PD versus HS classification performed better when the WHARMPA were used to harmonize (BAC = 78.60%; AUC = 0.90) than when using the Boolean site information (BAC = 56.31%; AUC = 0.71) and without it (BAC = 57.22%; AUC = 0.73). The VBM analysis harmonized using WHARMPA provided larger and more statistically robust clusters in regions previously reported in PD than when the Boolean site covariates or no corrections were added to the model. In conclusion, WHARMPA might encode global site-effects quantitatively and allow the harmonization of data. This method is user-friendly and provides a powerful solution, without complex implementations, to clean the analyses by removing variability associated with the differences between sites.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725324
dc.identifier.idimarina9300819
dc.identifier.issn1065-9471
dc.identifier.pmid35305545
dc.identifier.urihttps://hdl.handle.net/2445/189376
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/hbm.25838
dc.relation.ispartofHuman Brain Mapping, 2022, vol. 43, num. 10, p. 3130-3142
dc.relation.urihttps://doi.org/10.1002/hbm.25838
dc.rightscc-by (c) Monte Rubio, Gemma et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Medicina)
dc.subject.classificationMalaltia de Parkinson
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationProcessos gaussians
dc.subject.otherParkinson's disease
dc.subject.otherMagnetic resonance imaging
dc.subject.otherGaussian processes
dc.titleParameters from site classification to harmonize MRI clinical studies: Application to a multi-site Parkinson's disease dataset
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725324.pdf
Mida:
5.97 MB
Format:
Adobe Portable Document Format