Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2018
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/159358

Convergence regions for the Chebyshev-Halley family

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this paper we study the dynamical behavior of the Chebyshev-Halley methods on the family of degree $n$ polynomials $z^{n}+c$. We prove that, despite increasing the degree, it is still possible to draw the parameter space by using the orbit of a single critical point. For the methods having $z=\infty $ as an attracting fixed point, we show how the basins of attraction of the roots become smaller as the value of $n$ grows. We also demonstrate that, although the convergence order of the Chebyshev-Halley family is 3, there is a member of order 4 for each value of $n$. In the case of quadratic polynomials, we bound the set of parameters which correspond to iterative methods with stable behaviour other than the basins of attraction of the roots.

Matèries (anglès)

Citació

Citació

CAMPOS, Beatriz, CANELA SÁNCHEZ, Jordi, VINDEL, Pura. Convergence regions for the Chebyshev-Halley family. _Communications In Nonlinear Science And Numerical Simulation_. 2018. Vol. 56, núm. 508-525. [consulta: 24 de gener de 2026]. ISSN: 1007-5704. [Disponible a: https://hdl.handle.net/2445/159358]

Exportar metadades

JSON - METS

Compartir registre