Convergence regions for the Chebyshev-Halley family

dc.contributor.authorCampos, Beatriz
dc.contributor.authorCanela Sánchez, Jordi
dc.contributor.authorVindel, Pura
dc.date.accessioned2020-05-08T10:59:04Z
dc.date.available2020-12-31T06:10:22Z
dc.date.issued2018
dc.date.updated2020-05-08T10:59:04Z
dc.description.abstractIn this paper we study the dynamical behavior of the Chebyshev-Halley methods on the family of degree $n$ polynomials $z^{n}+c$. We prove that, despite increasing the degree, it is still possible to draw the parameter space by using the orbit of a single critical point. For the methods having $z=\infty $ as an attracting fixed point, we show how the basins of attraction of the roots become smaller as the value of $n$ grows. We also demonstrate that, although the convergence order of the Chebyshev-Halley family is 3, there is a member of order 4 for each value of $n$. In the case of quadratic polynomials, we bound the set of parameters which correspond to iterative methods with stable behaviour other than the basins of attraction of the roots.
dc.format.extent18 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec673448
dc.identifier.issn1007-5704
dc.identifier.urihttps://hdl.handle.net/2445/159358
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.cnsns.2017.08.024
dc.relation.ispartofCommunications In Nonlinear Science And Numerical Simulation, 2018, vol. 56, p. 508-525
dc.relation.urihttps://doi.org/10.1016/j.cnsns.2017.08.024
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes de Chebyshev
dc.subject.classificationPolinomis
dc.subject.otherChebyshev systems
dc.subject.otherPolynomials
dc.titleConvergence regions for the Chebyshev-Halley family
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
673448.pdf
Mida:
4.7 MB
Format:
Adobe Portable Document Format