Can Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein-Ligand Complex?

dc.contributor.authorPinheiro, Silvana de Souza
dc.contributor.authorCurutchet Barat, Carles E.
dc.date.accessioned2019-02-12T12:03:37Z
dc.date.available2019-02-12T12:03:37Z
dc.date.issued2017-03-16
dc.date.updated2019-02-12T12:03:37Z
dc.description.abstractFörster resonance energy transfer (FRET) reactions involving ligands and aromatic amino acids can substantially impact the fluorescence properties of a protein-ligand complex, an impact intimately related to the corresponding binding mode. Structural characterization of such binding events in terms of intermolecular distances can be done through the well-known R-6 distance-dependent Förster rate expression. However, such interpretation suffers from uncertainties underlying Förster theory in the description of the electronic coupling that promotes FRET, mostly related to the dipole-dipole orientation factor, dielectric screening effects and deviations from the ideal dipole approximation. Here, we investigate how Förster approximations impact the prediction of energy transfer dynamics in the complex between flurbiprofen and human serum albumin (HSA), as well as a model flurbiprofen-Trp dyad, in which recent observations of enantioselective fluorescence quenching has been ascribed to energy transfer from flurbiprofen to Trp. To this aim, we combine classical molecular dynamics simulations with polarizable quantum mechanics/molecular mechanics (QM/MM) calculations that allow overcoming Förster approximations. On the basis of our results, we discuss the potential of structure-based simulations in the characterization of drug-binding events through fluorescence techniques. Overall, we find an excellent agreement among theory and experiment both in terms of enantioselectivity and FRET times, thus strongly supporting the reliability of the binding modes proposed for the (S)- and (R)- enantiomers of flurbiprofen. In particular, we show that the dynamic quenching arises from a small fraction of drug bound to the secondary site of HSA at the interface between subdomains IIA and IIB, whereas the enantioselectivity arises from the larger flexibility of the (S)-flurbiprofen enantiomer in the binding pocket.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec669478
dc.identifier.issn1520-6106
dc.identifier.pmid28235382
dc.identifier.urihttps://hdl.handle.net/2445/128162
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jpcb.7b00217
dc.relation.ispartofJournal of Physical Chemistry B, 2017, vol. 121, num. 10, p. 2265-2278
dc.relation.urihttps://doi.org/10.1021/acs.jpcb.7b00217
dc.rights(c) American Chemical Society , 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
dc.subject.classificationFluorescència
dc.subject.classificationLligands (Bioquímica)
dc.subject.classificationDinàmica molecular
dc.subject.classificationTransferència d'energia
dc.subject.classificationComplexitat computacional
dc.subject.otherFluorescence
dc.subject.otherLigands (Biochemistry)
dc.subject.otherMolecular dynamics
dc.subject.otherEnergy transfer
dc.subject.otherComputational complexity
dc.titleCan Förster Theory Describe Stereoselective Energy Transfer Dynamics in a Protein-Ligand Complex?
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
669478.pdf
Mida:
10.45 MB
Format:
Adobe Portable Document Format