Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  Monleón-Getino,Antonio et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/226038

Advancing Viscoelastic Material Characterization ThroughComputer Vision and Robotics: MIRANDA and RELAPP

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

This study introduces MIRANDA, a computer vision system, and RELAPP, a complementary force measurement system, developed for characterizing viscoelastic materials. Our aim was to evaluate their combined ability to predict key rheological parameters and demonstrate their utility in material analysis, offering an alternative to traditional methods. We analyzed five distinct flour dough samples, correlating MIRANDA and RELAPP variables with established rheological reference values. Support Vector Machine (SVM) regression models were trained using MIRANDA’s stable TR and elasticity data to predict industrially relevant parameters: baking strength (W), tenacity (P), extensibility (L), and final viscosity (RVU) from Chopin alveograph and viscosimeter. The predictive models showed promising results, with R2 values of 0.594 (p = 0) forW, 0.575 (p = 0) for P, and 0.612 (p = 0.03763) for viscosity, all statistically significant. While these findings are promising, it is important to note that the small sample size may limit the generalizability of these models. The synergy between the systems was evident, exemplified by strong positive correlations, such as between MIRANDA’s Elasticity and RELAPP’s c_exp (parameter ‘c’ of its mathematical model m1, r = 0.858) and final resistive force (r = 0.839). Despite the limited sample size, these findings highlight MIRANDA’s versatility and speed for efficient material characterization. MIRANDA and RELAPP offer significant industrial implications for viscoelastic materials, including accelerating development cycles and enhancing continuous quality control. This approach has strong potential to reduce reliance on slower, traditional methods, warranting further validation with larger datasets.

Matèries (anglès)

Citació

Citació

MONLEÓN GETINO, Toni, MADARNÁS-GÓMEZ, Victor, COBOS-SOLER, Mario, ALMACELLAS, Eduard, RAMOS-CASTRO, Juan, BIELSA, Xavier, LÓPEZ-BROSA, Pere, SAHUQUILLO ESTRUGO, Àngels, MARSÀ-GONZÁLEZ, Inés, RODRÍGUEZ-MENA, Alejandro. Advancing Viscoelastic Material Characterization ThroughComputer Vision and Robotics: MIRANDA and RELAPP. _Materials_. 2025. Vol. 18, núm. 4827. [consulta: 7 de febrer de 2026]. ISSN: 1996-1944. [Disponible a: https://hdl.handle.net/2445/226038]

Exportar metadades

JSON - METS

Compartir registre