Advancing Viscoelastic Material Characterization ThroughComputer Vision and Robotics: MIRANDA and RELAPP

dc.contributor.authorMonleón Getino, Toni
dc.contributor.authorMadarnás-Gómez, Victor
dc.contributor.authorCobos-Soler, Mario
dc.contributor.authorAlmacellas, Eduard
dc.contributor.authorRamos-Castro, Juan
dc.contributor.authorBielsa, Xavier
dc.contributor.authorLópez-Brosa, Pere
dc.contributor.authorSahuquillo Estrugo, Àngels
dc.contributor.authorMarsà-González, Inés
dc.contributor.authorRodríguez-Mena, Alejandro
dc.date.accessioned2026-01-23T13:37:58Z
dc.date.available2026-01-23T13:37:58Z
dc.date.issued2025
dc.date.updated2026-01-23T13:37:58Z
dc.description.abstractThis study introduces MIRANDA, a computer vision system, and RELAPP, a complementary force measurement system, developed for characterizing viscoelastic materials. Our aim was to evaluate their combined ability to predict key rheological parameters and demonstrate their utility in material analysis, offering an alternative to traditional methods. We analyzed five distinct flour dough samples, correlating MIRANDA and RELAPP variables with established rheological reference values. Support Vector Machine (SVM) regression models were trained using MIRANDA’s stable TR and elasticity data to predict industrially relevant parameters: baking strength (W), tenacity (P), extensibility (L), and final viscosity (RVU) from Chopin alveograph and viscosimeter. The predictive models showed promising results, with R2 values of 0.594 (p = 0) forW, 0.575 (p = 0) for P, and 0.612 (p = 0.03763) for viscosity, all statistically significant. While these findings are promising, it is important to note that the small sample size may limit the generalizability of these models. The synergy between the systems was evident, exemplified by strong positive correlations, such as between MIRANDA’s Elasticity and RELAPP’s c_exp (parameter ‘c’ of its mathematical model m1, r = 0.858) and final resistive force (r = 0.839). Despite the limited sample size, these findings highlight MIRANDA’s versatility and speed for efficient material characterization. MIRANDA and RELAPP offer significant industrial implications for viscoelastic materials, including accelerating development cycles and enhancing continuous quality control. This approach has strong potential to reduce reliance on slower, traditional methods, warranting further validation with larger datasets.
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec764096
dc.identifier.issn1996-1944
dc.identifier.urihttps://hdl.handle.net/2445/226038
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/ma18214827
dc.relation.ispartofMaterials, 2025, vol. 18, p. 4827
dc.relation.urihttps://doi.org/10.3390/ma18214827
dc.rightscc-by (c) Monleón-Getino,Antonio et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject.classificationViscositat
dc.subject.classificationRobòtica
dc.subject.classificationVisió per ordinador
dc.subject.otherViscosity
dc.subject.otherRobotics
dc.subject.otherComputer vision
dc.titleAdvancing Viscoelastic Material Characterization ThroughComputer Vision and Robotics: MIRANDA and RELAPP
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
912172.pdf
Mida:
3.82 MB
Format:
Adobe Portable Document Format