Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/191843
Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
Rain type classification into convective and stratiform is an essential step required to improve quantitative precipitation estimations by remote sensing instruments. Previous studies with Micro Rain Radar (MRR) measurements and subjective rules have been performed to classify rain events. However, automating this process by using machine learning (ML) models provides the advantages of fast and reliable classification with the possibility to classify rain minute by minute. A total of 20,979 min of rain data measured by an MRR at Das in northeast Spain were used to build seven types of ML models for stratiform and convective rain type classification. The proposed classification models use a set of 22 parameters that summarize the reflectivity, the Doppler velocity, and the spectral width (SW) above and below the so-called separation level (SL). This level is defined as the level with the highest increase in Doppler velocity and corresponds with the bright band in stratiform rain. A pre-classification of the rain type for each minute based on the rain microstructure provided by the collocated disdrometer was performed. Our results indicate that complex ML models, particularly tree-based ensembles such as xgboost and random forest which capture the interactions of different features, perform better than simpler models. Applying methods from the field of interpretable ML, we identified reflectivity at the lowest layer and the average spectral width in the layers below SL as the most important features. High reflectivity and low SW values indicate a higher probability of convective rain.
Matèries
Matèries (anglès)
Citació
Col·leccions
Citació
GHADA, Wael, CASELLAS, Enric, HERBINGER, Julia, GARCIA BENADI, Albert, BOTHMANN, Ludwig, ESTRELLA, Nicole, BECH, Joan, MENZEL, Annette. Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar. _Remote Sensing_. 2022. Vol. 14, núm. 18, pàgs. 1-23. [consulta: 21 de gener de 2026]. ISSN: 2072-4292. [Disponible a: https://hdl.handle.net/2445/191843]