Stratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar

dc.contributor.authorGhada, Wael
dc.contributor.authorCasellas, Enric
dc.contributor.authorHerbinger, Julia
dc.contributor.authorGarcia Benadi, Albert
dc.contributor.authorBothmann, Ludwig
dc.contributor.authorEstrella, Nicole
dc.contributor.authorBech, Joan
dc.contributor.authorMenzel, Annette
dc.date.accessioned2022-12-23T18:03:18Z
dc.date.available2022-12-23T18:03:18Z
dc.date.issued2022
dc.date.updated2022-12-23T18:03:18Z
dc.description.abstractRain type classification into convective and stratiform is an essential step required to improve quantitative precipitation estimations by remote sensing instruments. Previous studies with Micro Rain Radar (MRR) measurements and subjective rules have been performed to classify rain events. However, automating this process by using machine learning (ML) models provides the advantages of fast and reliable classification with the possibility to classify rain minute by minute. A total of 20,979 min of rain data measured by an MRR at Das in northeast Spain were used to build seven types of ML models for stratiform and convective rain type classification. The proposed classification models use a set of 22 parameters that summarize the reflectivity, the Doppler velocity, and the spectral width (SW) above and below the so-called separation level (SL). This level is defined as the level with the highest increase in Doppler velocity and corresponds with the bright band in stratiform rain. A pre-classification of the rain type for each minute based on the rain microstructure provided by the collocated disdrometer was performed. Our results indicate that complex ML models, particularly tree-based ensembles such as xgboost and random forest which capture the interactions of different features, perform better than simpler models. Applying methods from the field of interpretable ML, we identified reflectivity at the lowest layer and the average spectral width in the layers below SL as the most important features. High reflectivity and low SW values indicate a higher probability of convective rain.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725870
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/2445/191843
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/rs14184563
dc.relation.ispartofRemote Sensing, 2022, vol. 14, num. 18, p. 1-23
dc.relation.urihttps://doi.org/10.3390/rs14184563
dc.rightscc-by (c) Ghada, Wael et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationTemps (Meteorologia)
dc.subject.classificationRadar
dc.subject.classificationAprenentatge automàtic
dc.subject.otherWeather
dc.subject.otherRadar
dc.subject.otherMachine learning
dc.titleStratiform and Convective Rain Classification Using Machine Learning Models and Micro Rain Radar
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725870.pdf
Mida:
5.43 MB
Format:
Adobe Portable Document Format