El nombre de Frobenius
| dc.contributor.advisor | Zarzuela, Santiago | |
| dc.contributor.author | Maristany Sala, Pau | |
| dc.date.accessioned | 2019-01-17T08:29:11Z | |
| dc.date.available | 2019-01-17T08:29:11Z | |
| dc.date.issued | 2018-06-27 | |
| dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2018, Director: Santiago Zarzuela | ca |
| dc.description.abstract | [en] Let $a_{1},..., a_{n}$ be positive integers, find the largest natural number that is not representable as a non-negative combination of $a_{1},..., a_{n}$. This problem is called Frobenius Problem. The project consists on a exposition of some of the most important results about this problem. We will study it using numerical semigroups and Hilbert series. We will prove that Frobenius Problem is $\mathcal{NP}$-hard and also that there is no polynomial formula for the general case. | ca |
| dc.format.extent | 61 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.uri | https://hdl.handle.net/2445/127363 | |
| dc.language.iso | cat | ca |
| dc.rights | cc-by-nc-nd (c) Pau Maristany Sala, 2018 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
| dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | |
| dc.subject.classification | Nombres naturals | ca |
| dc.subject.classification | Treballs de fi de grau | |
| dc.subject.classification | Anàlisi diofàntica | ca |
| dc.subject.classification | Semigrups | ca |
| dc.subject.classification | Àlgebra commutativa | ca |
| dc.subject.other | Natural numbers | en |
| dc.subject.other | Bachelor's theses | |
| dc.subject.other | Diophantine analysis | en |
| dc.subject.other | Semigroups | en |
| dc.subject.other | Commutative algebra | en |
| dc.title | El nombre de Frobenius | ca |
| dc.type | info:eu-repo/semantics/bachelorThesis | ca |
Fitxers
Paquet original
1 - 1 de 1
Carregant...
- Nom:
- memoria.pdf
- Mida:
- 547.51 KB
- Format:
- Adobe Portable Document Format
- Descripció:
- Memòria