Hodge-de Rham numbers of almost complex 4-manifolds

dc.contributor.authorCirici, Joana
dc.contributor.authorWilson, Scott O.
dc.date.accessioned2023-01-17T11:42:26Z
dc.date.available2023-01-17T11:42:26Z
dc.date.issued2022-12
dc.date.updated2023-01-17T11:42:26Z
dc.description.abstractWe introduce and study Hodge-de Rham numbers for compact almost complex 4-manifolds, generalizing the Hodge numbers of a complex surface. The main properties of these numbers in the case of complex surfaces are extended to this more general setting, and it is shown that all Hodge-de Rham numbers for compact almost complex 4-manifolds are determined by the topology, except for one (the irregularity). Finally, these numbers are shown to prohibit the existence of complex structures on certain manifolds, without reference to the classification of surfaces.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec727829
dc.identifier.issn0723-0869
dc.identifier.urihttps://hdl.handle.net/2445/192218
dc.language.isoeng
dc.publisherElsevier GmbH
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.exmath.2022.08.005
dc.relation.ispartofExpositiones Mathematicae, 2022, vol. 40, num. 4, p. 1244-1260
dc.relation.urihttps://doi.org/10.1016/j.exmath.2022.08.005
dc.rightscc-by (c) Joana Cirici et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats complexes
dc.subject.classificationGeometria diferencial global
dc.subject.otherComplex manifolds
dc.subject.otherGlobal differential geometry
dc.titleHodge-de Rham numbers of almost complex 4-manifolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
727829.pdf
Mida:
312.14 KB
Format:
Adobe Portable Document Format