Exceptional Gegenbauer polynomials via isospectral deformation

dc.contributor.authorGarcía-Ferrero, María Ángeles
dc.contributor.authorGómez-Ullate Oteiza, David
dc.contributor.authorMilson, Robert
dc.contributor.authorMunday, James
dc.date.accessioned2023-02-07T06:56:50Z
dc.date.available2023-02-07T06:56:50Z
dc.date.issued2022-06-10
dc.date.updated2023-02-07T06:56:50Z
dc.description.abstractIn this paper, we show how to construct exceptional orthogonal polynomials (XOP) using isospectral deformations of classical orthogonal polynomials. The construction is based on confluent Darboux transformations, where repeated factorizations at the same eigenvalue are allowed. These factorizations allow us to construct Sturm-Liouville problems with polynomial eigenfunctions that have an arbitrary number of realvalued parameters. We illustrate this new construction by exhibiting the class of deformed Gegenbauer polynomials, which are XOP families that are isospectral deformations of classical Gegenbauer polynomials.
dc.format.extent40 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec727532
dc.identifier.issn0022-2526
dc.identifier.urihttps://hdl.handle.net/2445/193200
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1111/sapm.12510
dc.relation.ispartofStudies in Applied Mathematics, 2022, vol. 149, num. 2, p. 324-363
dc.relation.urihttps://doi.org/10.1111/sapm.12510
dc.rightscc by-nc-nd (c) María Ángeles García-Ferrero, et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions hipergeomètriques
dc.subject.classificationTeoria de l'aproximació
dc.subject.classificationPolinomis
dc.subject.otherHypergeometric functions
dc.subject.otherApproximation theory
dc.subject.otherPolynomials
dc.titleExceptional Gegenbauer polynomials via isospectral deformation
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
727532.pdf
Mida:
585.1 KB
Format:
Adobe Portable Document Format