Domain generalization in deep learning for contrast-enhanced imaging

dc.contributor.authorSendra-Balcells, Carla
dc.contributor.authorCampello Román, Víctor Manuel
dc.contributor.authorMartín-Isla, Carlos
dc.contributor.authorViladés Medel, David
dc.contributor.authorDescalzo, Martín Luis
dc.contributor.authorGuala, Andrea
dc.contributor.authorRodríguez-Palomares, José Fernando
dc.contributor.authorLekadir, Karim, 1977-
dc.date.accessioned2024-07-01T07:37:55Z
dc.date.available2024-07-01T07:37:55Z
dc.date.issued2022-10-01
dc.date.updated2024-07-01T07:38:01Z
dc.description.abstractBackground: The domain generalization problem has been widely investigated in deep learning for noncontrast imaging over the last years, but it received limited attention for contrast-enhanced imaging. However, there are marked differences in contrast imaging protocols across clinical centers, in particular in the time between contrast injection and image acquisition, while access to multi-center contrast-enhanced image data is limited compared to available datasets for non-contrast imaging. This calls for new tools for generalizing single-domain, single-center deep learning models across new unseen domains and clinical centers in contrast-enhanced imaging. Methods: In this paper, we present an exhaustive evaluation of deep learning techniques to achieve generalizability to unseen clinical centers for contrast-enhanced image segmentation. To this end, several techniques are investigated, optimized and systematically evaluated, including data augmentation, domain mixing, transfer learning and domain adaptation. To demonstrate the potential of domain generalization for contrast-enhanced imaging, the methods are evaluated for ventricular segmentation in contrast-enhanced cardiac magnetic resonance imaging (MRI). Results: The results are obtained based on a multi-center cardiac contrast-enhanced MRI dataset acquired in four hospitals located in three countries (France, Spain and China). They show that the combination of data augmentation and transfer learning can lead to single-center models that generalize well to new clinical centers not included during training. Conclusions: Single-domain neural networks enriched with suitable generalization procedures can reach and even surpass the performance of multi-center, multi-vendor models in contrast-enhanced imaging, hence eliminating the need for comprehensive multi-center datasets to train generalizable models.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec737919
dc.identifier.issn0010-4825
dc.identifier.urihttps://hdl.handle.net/2445/214020
dc.language.isoeng
dc.publisherElsevier Ltd
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.compbiomed.2022.106052
dc.relation.ispartofComputers in Biology and Medicine, 2022, vol. 149
dc.relation.urihttps://doi.org/10.1016/j.compbiomed.2022.106052
dc.rightscc-by (c) Carla Sendra-Balcells, et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationImatges mèdiques
dc.subject.classificationImatges per ressonància magnètica
dc.subject.classificationDiagnòstic per la imatge
dc.subject.otherMachine learning
dc.subject.otherImaging systems in medicine
dc.subject.otherMagnetic resonance imaging
dc.subject.otherDiagnostic imaging
dc.titleDomain generalization in deep learning for contrast-enhanced imaging
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
824745.pdf
Mida:
3.96 MB
Format:
Adobe Portable Document Format