Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/134503

3D Electrophoresis-assisted lithography (3DEAL): 3D molecular printing to create functional patterns and anisotropic hydrogels

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The ability to easily generate anisotropic hydrogel environments made from functional molecules with microscale resolution is an exciting possibility for the biomaterials community. This study reports a novel 3D electrophoresis‐assisted lithography (3DEAL) platform that combines elements from proteomics, biotechnology, and microfabrication to print well‐defined 3D molecular patterns within hydrogels. The potential of the 3DEAL platform is assessed by patterning immunoglobulin G, fibronectin, and elastin within nine widely used hydrogels and characterizing pattern depth, resolution, and aspect ratio. Furthermore, the technique's versatility is demonstrated by fabricating complex patterns including parallel and perpendicular columns, curved lines, gradients of molecular composition, and patterns of multiple proteins ranging from tens of micrometers to centimeters in size and depth. The functionality of the printed molecules is assessed by culturing NIH‐3T3 cells on a fibronectin‐patterned polyacrylamide‐collagen hydrogel and selectively supporting cell growth. 3DEAL is a simple, accessible, and versatile hydrogel‐patterning platform based on controlled molecular printing that may enable the development of tunable, chemically anisotropic, and hierarchical 3D environments.

Citació

Citació

AGUILAR, Juan p., LIPKA, Michal, PRIMO, Gastón a., LICON BERNAL, Edxon eduardo, FERNÁNDEZ PRADAS, Juan marcos, YAROSHCHUK, Andriy, ALBERICIO PALOMERA, Fernando, MATA, Álvaro. 3D Electrophoresis-assisted lithography (3DEAL): 3D molecular printing to create functional patterns and anisotropic hydrogels. _Advanced Functional Materials_. 2018. Vol. 28, núm. 15, pàgs. 1703014. [consulta: 24 de gener de 2026]. ISSN: 1616-301X. [Disponible a: https://hdl.handle.net/2445/134503]

Exportar metadades

JSON - METS

Compartir registre