Carregant...
Miniatura

Tipus de document

Article

Versió

Versió enviada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/152060

On the relationships between \alpha-connections and the asymptotic properties of predictive distributions

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In a recent paper Komaki studies the second-order asymptotic properties of the predictive distributions, using the Kullback-Leibler divergence as loss function. He shows that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as loss function any f-divergence. It appears a relationship between the a-connections and the optimal predictive distributions. In particular, using an a-divergence to measure the goodness of a predictive distribution, the optimal shift of the estimative distribution is related with alpha-covariant derivatives. The expression we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.

Descripció

Preprint enviat per a la seva publicació en una revista científica: Bernoulli, 1999, vol. 5, núm. 1, p. 163-176. [http://projecteuclid.org/euclid.bj/1173707099]

Citació

Citació

CORCUERA VALVERDE, José manuel, GIUMMOLÈ, F. On the relationships between \alpha-connections and the asymptotic properties of predictive distributions. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/152060]

Exportar metadades

JSON - METS

Compartir registre